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ABSTRACT

Cholinergic innervation of the frontal cortex is important in higher cognitive functions and
may have been altered in humans relative to other species to support human-specific intellectual
capacities. To evaluate this hypothesis we conducted quantitative comparative analyses of
choline acetyltransferase-immunoreactive axons in cortical areas 9, 32, and 4 among humans,
chimpanzees, and macaque monkeys. Area 9 of the dorsolateral prefrontal cortex is involved in
inductive reasoning and specific components of working memory processes, while area 32 of the
medial prefrontal cortex has been implicated in theory of mind. Area 4 (primary motor cortex)
was also evaluated because it is not directly associated with higher cognitive functions. The
findings revealed no quantitative species differences in the three cortical areas examined, indi-
cating that human cognitive specializations are not related to a quantitative increase in cortical
cholinergic input. However, species-specific morphological specializations were observed. Clus-
ters of cholinergic fibers that may be indicative of cortical plasticity events were present in
chimpanzees and humans, but not in macaques. The other significant morphology noted was the
common and distinctive oval or ovoid perisomatic staining in macaque cortices. This feature was
also sporadically observed in chimpanzee cortex. Our findings suggest a potential alteration of
cortical cholinergic afferents within the prefrontal cortex of humans and chimpanzees, to the

exclusion of macaque monkeys. J. Comp. Neurol. 506:409—-424, 2008.
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In contrast to neurotransmitters that act on an imme-
diate and short-term time scale, neuromodulators have
effects that are slower, of longer duration, and are more
spatially diffuse (Hasselmo, 1995). While many chemicals
act as both neurotransmitters and neuromodulators, neu-
romodulatory actions are defined by their long-term ef-
fects on the processing characteristics of cortical networks
by influencing synaptic transmission and pyramidal cell
adaptation (Hasselmo, 1995; Dreher and Burnod, 2002).
The role of neuromodulators in mediating cognitive pro-
cesses in humans and other animals (Steckler and Sahgal,
1995; Hasselmo, 1995; McGaughy et al., 2000; Sarter and
Parikh, 2005) and their involvement in many human neu-
ropsychiatric illnesses are well documented (Akil et al.,
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1999; Mega, 2000; Cools et al., 2002; Austin et al., 2002).
Because they are integrally involved in cognition, neuro-
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modulatory influence on cortical circuits may have been
altered in the evolution of the modern human brain
(Previc, 1999).

Acetylcholine (ACh) has been implicated in the chemical
regulation of learning, memory deficits associated with
aging, as well as in human neurodegenerative diseases
(Levin and Simon, 1998; Harder et al., 1998; Hasselmo,
1999; Mega, 2000; Sarter and Parikh, 2005). Studies in
rodents and primates have shown that cholinergic axons
originate from neurons in the nucleus basalis of Meynert
and project to all regions of the cerebral cortex, exhibiting
a substantial degree of regional heterogeneity (Mesulam
et al., 1983, 1986, 1992; Lehmann et al., 1984; Ichikawa
and Hirata, 1986; Lysakowski et al., 1986; Lewis, 1991,
Mechawar et al., 2000; Mesulam and Geula, 1991; Mesu-
lam, 2004). Although cortical cholinergic input is ubiqui-
tous, the existence of regional differences in cholinergic
innervation of cortical areas and laminar preferences sup-
port the concept that cholinergic systems have specific
local circuit processing properties. At the cellular level,
ACh enhances long-term potentiation by enhancing syn-
aptic modification, having both excitatory and inhibitory
effects on pyramidal cells and interneurons (Hasselmo
and Bower, 1992; Hasselmo and Barkai, 1995; Patil et al.,
1998; Patil and Hasselmo, 1999). Through its actions ACh
plays an important role in cortical plasticity (Rasmusson,
2000).

The involvement of ACh in cognition was initially dem-
onstrated in studies using ACh receptor antagonists in
humans and rats (Deutsch, 1971; Drachman, 1977). Cho-
linergic projections to the prefrontal cortex enhance input
processing in attentional contexts and facilitate memory
encoding (Blokland, 1996; Levin and Simon, 1998; Sarter
and Parikh, 2005). For example, the administration of
scopolamine, a cholinergic antagonist, eliminates the ca-
pacity to form episodic memories and diminishes the abil-
ity to analyze information or acquire semantic knowledge
in macaque monkeys (Harder et al., 1998). The input
provided by ACh to the prefrontal cortex is critical to the
learning process and is also important in cognitive flexi-
bility and working memory (Steckler and Sahgal, 1995;
Levin and Simon, 1998; Sarter and Parikh, 2005). Fur-
thermore, patients with Alzheimer’s disease display re-
duced ACh activity in prefrontal cortical areas implicated
in learning and working memory (Whitehouse, 1992; Me-
sulam, 1996; Mega, 2000), and disruption of cortical ACh
has been implicated in other diseases such as schizophre-
nia and Parkinson’s disease (for review, see Sarter and
Parikh, 2005). This evidence indicates that the cholinergic
system’s projections to the neocortex may be a candidate
neurochemical substrate for natural selection to modify in
the evolution of specialized human intellectual capacities.

The present study examined whether the human frontal
cortex exhibits denser and/or different regional and lami-
nar patterns of cholinergic innervation relative to other
primates. A quantitative comparative analysis of choline
acetyltransferase-immunoreactive (ChAT-ir) axons was
conducted in cortical areas 9, 32, and 4 of humans, chim-
panzees, and macaque monkeys. Areas 9 and 32 each
make contributions to higher cognitive functions. Area 9 of
the dorsolateral prefrontal cortex facilitates higher-order
behavioral organization and is activated during inductive
reasoning and working memory tasks (Petrides et al.,
1993; Petrides, 1995; Aboitiz and Garcia, 1997; Goel et al.,
1997; Marklund et al., 2007). Area 32 of the medial pre-
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TABLE 1. Samples Used in the Study

Sex Age Brain Weight (g) PMI Fixation
Macaca maura F 5 83.3 N/A Perfused
Macaca maura F 7 86.1 N/A Perfused
Macaca maura F 7 89.2 N/A Perfused
Macaca maura F 8 96.5 N/A Perfused
Macaca maura M 8 105.5 N/A Perfused
Macaca maura M 10 95.1 N/A Perfused
Pan troglodytes F 19 229.2 <14 Immersion
Pan troglodytes F 27 314.3 <14 Immersion
Pan troglodytes F 35 348.1 <14 Immersion
Pan troglodytes M 17 384.0 <14 Immersion
Pan troglodytes M 19 364.6 <14 Immersion
Pan troglodytes M 41 377.2 <14 Immersion
Homo sapiens F 40 1250 17 Immersion
Homo sapiens F 43 1280 6 Immersion
Homo sapiens F 53 1350 9 Immersion
Homo sapiens M 35 1460 11 Immersion
Homo sapiens M 48 1450 12 Immersion
Homo sapiens M 54 1450 12 Immersion

N/A, not applicable; postmortem interval (PMI) is reported in hours.

frontal cortex is involved in ‘theory of mind’ (TOM), the
ability to infer the mental states of others, allowing hu-
mans to cooperate, deceive, and to predict the actions of
others (Adolphs, 2001; Johnson et al., 2002; Gallagher and
Frith, 2003). Species differences were not expected in area
4, as cognitive functions are not associated with primary
motor cortex.

MATERIALS AND METHODS
Specimens

The nonhuman brain specimens for this research in-
cluded Moor macaques (Macaca maura, four females, two
males, age range 5-10 years) and common chimpanzees
(Pan troglodytes, three females, three males, age range
17-35 years). Human brain specimens were provided by
Northwestern University Alzheimer’s Disease Center
Brain Bank (three women, three men, age range 35-54
years). All human and nonhuman individuals were adult,
nongeriatric, and free of gross neuropathologic abnormal-
ities. Human brains were examined for senile plaques and
neurofibrillary tangles by the donating brain bank. All
individuals received a score of zero for the CERAD senile
plaque grade (Mirra et al., 1999) and the Braak and Braak
(1991) neurofibrillary tangle stage and showed no evi-
dence of any neurologic or psychiatric disorder at time of
death. The nonhuman subjects were housed in social
groups and had never been used in studies involving drug
treatment. The age, sex, brain weight, and postmortem
interval for each specimen can be found in Table 1.

Fixation and sample processing

The macaque monkeys were perfused transcardially
with 4% paraformaldehyde as part of unrelated experi-
ments following methods described previously (Hof and
Nimchinsky, 1992; Hof et al., 1996). Chimpanzee and hu-
man brains were collected postmortem and fixed by im-
mersion in 10% buffered formalin for 7-10 days, then
transferred to a 0.1 M phosphate-buffered saline (PBS, pH
7.4) solution containing 0.1% sodium azide and stored at
4°C to prevent further tissue shrinkage and blockade of
antigens.

All samples derive from the left hemisphere. For ma-
caque and chimpanzee brains the entire frontal lobe was
removed just rostral to the primary motor cortex as a
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coronal slab, including areas 9 and 32. For macaque spec-
imens the occipital lobe was removed rostral to the lunate
sulcus. This resulted in three blocks for each macaque left
hemisphere, the middle block containing the primary mo-
tor cortex (area 4). The region of hand representation in
the chimpanzee primary motor cortex had been dissected
from the left hemisphere of each brain to be processed as
small blocks as part of an unrelated project. This region
was identified as the area on the lateral surface at the
level of the middle genu located within the central sulcus
(Yousry et al., 1997). Human samples were dissected from
the regions of interest in 4-cm-thick blocks by the donat-
ing brain bank. Prior to sectioning, samples were cryopro-
tected by immersion in a series of sucrose solutions (10%,
20%, and 30%).

Brain specimens were frozen on dry ice and cut into
40-pm-thick sections using a sliding microtome. As the
brain samples were cut sections were placed into individ-
ual microcentrifuge tubes containing freezer storage solu-
tion (30% each distilled water, ethylene glycol, and glyc-
erol and 10% 0.244 M PBS) and numbered sequentially.
Sections were stored at —20°C.

A 1:10 series for all samples was stained for Nissl sub-
stance with a solution of 0.5% cresyl violet to reveal cell
somata. Nissl-stained sections were used to identify cyto-
architectural boundaries and to obtain neuron densities.

Immunohistochemistry

Floating tissue sections were stained using the avidin-
biotin-peroxidase method. Sections were removed from
the freezer and rinsed a minimum of 10 X 5 minutes in
PBS. A 1-in-10 series (human samples and chimpanzee
primary motor cortex) or a 1:20 series (macaque samples
and chimpanzee frontal lobe) for each area was immuno-
histochemically stained for ChAT using an affinity-
purified polyclonal goat anti-ChAT antibody raised
against human placental ChAT (AB144P, Chemicon, Te-
mecula, CA) to measure ACh-containing fibers (Ichikawa
and Hirata, 1986; Lewis, 1991; Mesulam et al., 1992; Sigle
et al., 2003). This polyclonal ChAT antiserum stains a
single band of 68 kDa molecular weight on Western im-
munoblot in human brain tissue (Bruce et al., 1985; Gross-
man et al., 1995; Gill et al., 2007). Preadsorption experi-
ments have been conducted for this antibody by adding
purified ChAT enzyme prior to the primary antibody in-
cubation in macaques (Macaca nemestrina) (Rico and Ca-
vada, 1998) and humans (Mufson et al., 1989; Mesulam et
al., 1992). For both species preadsorption experiments
yielded a complete absence of staining. Mesulam et al.
(1992) also tested for antibody specificity in human brain
tissue by substituting an irrelevant IgG for the ChAT
antibody, with the result being a lack of specific staining.
Finally, positive controls for antibody specificity include
well-known staining patterns for ChAT-ir cells within de-
fined regions of the telencephalon (i.e., nucleus basalis of
Meynert, caudate, and putamen). In the present study the
pattern of ChAT-ir staining within these regions of ma-
caques was identical to that previously reported for this
species (Mesulam et al., 1983, 1986; Rico and Cavada,
1998). For chimpanzees, stained sections included rostral
striatum, exhibiting the expected pattern of ChAT-ir cells
(Simié et al., 1999). Additional immunohistochemical con-
trols included processing sections as described with the
omission of either 1) the primary antibody or 2) the sec-
ondary antibody. Omission of the primary or secondary
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antibody resulted in a complete absence of labeled axons
and cells for each species.

Sections were pretreated for antigen retrieval by incu-
bating in 10 mM sodium citrate buffer (pH 3.5) at 37°C for
30 minutes. Sections were then rinsed and endogenous
peroxidase was quenched using a solution of 75% metha-
nol, 2.5% hydrogen peroxide (30%), and 22.5% distilled
water for 20 minutes at room temperature. Sections were
preblocked in a solution of PBS with 2% normal rabbit
serum and 0.3% Triton X-100 detergent, then the sections
were incubated in primary antibody diluted to 1:500 in
PBS for 48 hours at 4°C. After incubation in primary
antibody the tissue was incubated in biotinylated second-
ary antibody (1:200) in a solution of PBS and 2% normal
rabbit serum for 1 hour at room temperature. Sections
were then incubated in avidin-peroxidase complex (PK-
6100, Vector Laboratories, Burlingame, CA) for 1 hour at
room temperature. A 3,3’-diaminobenzidine-peroxidase
substrate with nickel solution enhancement was used as
the chromogen (SK-4100, Vector Laboratories). Immuno-
stained sections were counterstained with 0.5% methyl-
green to visualize nonimmunoreactive neurons and to aid
in identifying layers within the cortex. Robust and full
antibody penetration through the tissue sections was ob-
served for each species.

Original photomicrographs were processed using Adobe
Photoshop, v. 7.0 (San Jose, CA). Brightness, contrast,
and sharpness were adjusted to obtain pictures that most
closely resemble the appearance of the tissue as seen
through the microscope.

Identifying cortical regions and layers

Cortical regions of interest were identified based on
topological location and distinctive regional cytoarchitec-
ture recognizable on Nissl-stained sections. Cytoarchitec-
tural features were relied upon for identification of corti-
cal regions due to individual variation in the gross location
of brain regions (Zilles et al., 1996; Amunts et al., 1996;
Petrides and Pandya, 1999; Rademacher et al., 2001).
Cortical layers were analyzed separately as layers I, II,
III, and V/VI. Because there is not a sharp border between
the infragranular layers in all cortical areas, layers V and
VI were analyzed together. Layer IV was not analyzed, as
only area 9 is granular. The borders of cortical areas tend
not to be sharp or distinct, thus, sampling was limited to
a representative region within the cortical areas of inter-
est.

Area 9 is located in the dorsolateral prefrontal cortex,
extending medially to the paracingulate sulcus of humans
and the cingulate sulcus of macaque monkeys (Petrides
and Pandya, 1999; Paxinos et al., 2000) (Fig. 1). This
cortical area is expanded in anthropoids (i.e., monkeys,
apes, and humans) and has no defined homolog in other
mammals (Preuss and Goldman-Rakic, 1991; Aboitiz and
Garecia, 1997). For this study the portion of area 9 sampled
was located on the dorsal portion of the superior frontal
gyrus in humans and chimpanzees, and in the region
referred to as area 9L in macaque monkeys by Paxinos et
al. (2000). Area 32 is defined as the portion of the para-
cingulate cortex anterior to the genu of the corpus callo-
sum (Gallagher and Frith, 2003; Ongiir et al., 2003) (see
Fig. 1). In chimpanzees the cytoarchitecture of cortex
within the anterior paracingulate gyrus was described by
Bailey et al. (1950) to closely resemble area FDL in hu-
mans (von Economo and Koskinas, 1925), suggesting that
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Chimpanzee

Macaque

Fig. 1. Lateral (upper) and medial (lower) views of human, chim-
panzee, and macaque brains. The positions of the cortical regions
sampled in this study are labeled with their respective numerical
designations.

they are homologous in structure. Macaques do not pos-
sess a strict homolog of the portion of area 32 that is
activated in human TOM studies (i.e., anterior cingulate
area 32) (Ongiir et al., 2003). However, we chose this area
to investigate the evolution of the unique human behav-
ioral capacity, TOM. For comparative purposes we were
limited to the most similar anatomical cortical territory of
the medial prefrontal cortex area 32 in macaques, defined
as prelimbic cortex (Ongiir et al., 2003). Sampling within
area 4 was restricted to the portion associated with hand
representation (see Fig. 1). This restriction was imple-
mented to avoid potential differences of cholinergic inner-
vation in the various regions of primary motor cortex.
Species differences were not expected in area 4, as it is not
associated with cognition and is thought to perform a
similar function across primates (e.g., Rizzolatti et al.,
1998; Kaas, 2004).

Axon length density

Quantitative analyses were performed using computer-
assisted stereology. This system consisted of a Zeiss Axio-
plan 2 photomicroscope equipped with an Optronics Mi-
croFire camera, a Ludl XY motorized stage, Heidenhain
z-axis encoder, and Stereolnvestigator software, v. 6
(MBF Bioscience, Williston, VT). Once the cortical area of
interest was identified using both topological location and
cytoarchitecture (Preuss and Goldman-Rakic, 1991; Pet-
rides and Pandya, 1999; Lewis and van Essen, 2000; On-
gur et al., 2003; Petrides, 2005) in Nissl-stained sections,
two to five equidistantly spaced sections per area of inter-
est per individual were used. Care was taken to ensure
sampling within the middle of the cortical area in order to
avoid transition zones between cortical areas. The vari-
ance in section number was dependent on the number of
sections available for that cortical area. In some instances
the blocks of human tissue obtained from the brain bank
yielded only 20 to 30 sections. Once the area of interest
was identified the separate cortical layers (I, II, III, and
V/VI) were individually traced using the software at low
magnification (4X Zeiss Achroplan, N.A. 0.10). On the
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occasion when the methyl-green counterstain was too
light to identify laminar boundaries, individual layers
were traced from adjacent Nissl-stained sections and
transferred to the immunostained sections by lining up
the tracing with the same area on the immunostained
section.

The mean mounted section thickness was measured on
every fifth sampling location. Axon length was assessed
using the SpaceBalls probe under Koehler illumination at
63X (Zeiss Plan-Achromat, N.A. 1.4) (Calhoun and Mou-
ton, 2000; Mouton et al., 2002; Calhoun et al., 2004;
Kreczmanski et al., 2005), a stereological tool that places
sampling hemispheres for lineal features in the context of
a fractionator sampling scheme (Mouton, 2002). A sam-
pling hemisphere is a virtual hemisphere within the de-
fined sampling box that is oriented with the apex of the
hemisphere near the top of the tissue section and the base
of the hemisphere toward the bottom of the section (in the
z dimension). By moving through the tissue section in the
z dimension the diameter of the hemisphere increases and
fibers were marked where they intersected the outline of
the hemisphere. Hemispheres of 10 pm diameter were
used for all samples. Total fiber length within the sampled
volume of reference was calculated using the following
equation (Calhoun et al., 2004):

L =2 X (v/a) X (3is) X 1/asf X 1/ssf X 1/tsf

where v/a is the ratio of sampling frame volume to probe
surface area, Xis is the sum of the number of intersections
between fibers and sampling hemispheres, asf (area sam-
pling fraction; the fraction of the total area sampled) is the
area of the counting frame divided by the total area of the
reference space, ssf (section sampling fraction) is the num-
ber of sections analyzed divided by the total number of
sections through the reference space, and tsf (tissue sam-
pling fraction) is the sampling box height divided by mean
mounted section thickness. To obtain axon length density
the total fiber length was divided by the planimetric mea-
surement of the reference volume that was sampled, as
calculated by the Stereolnvestigator software. Analyses of
ChAT-ir axon length densities were used to analyze
species-specific cortical innervation patterns.

Staining for ChAT was robust and visual examination
through the z axis revealed full antibody penetration
through the tissue sections for each species. An average of
95.29 + 22.3 (mean * SD) sampling hemispheres was
placed in each layer/individual/cortical area. A total of
20,560 sampling hemispheres were used, with 115,083
intersections counted.

Neuron density

Neuron density was assessed using an optical disector
combined with a fractionator sampling scheme. Layers II,
III, and V/VI were outlined within the area of interest at
low magnification (4X Zeiss Achroplan, N.A. 0.10). The
optical disector probes were performed under Koehler il-
lumination using a 63X objective (Zeiss Plan-Apochromat,
N.A. 1.4). Counting frames were set at 40 X 40 pm. Neu-
rons were counted when the nucleolus was in focus within
the counting frame. Neurons were identified based on the
presence of a large, lightly stained nucleus, a distinct
nucleolus, and lightly stained proximal portions of den-
dritic processes (e.g., Sherwood et al., 2005). The counting
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frame height was set at 7 um to allow a guard zone of at
least 2 wm at the top and bottom of the sections. Neuron
density was calculated as the sum of neurons counted with
the optical disectors divided by the product of the disectors
and the volume of the disector (Sherwood et al., 2005). To
correct for tissue shrinkage in the z axis the height of the
disector was multiplied by the ratio of the nominal section
thickness (40 pm) to the actual number weighted mean
thickness after mounting and dehydration. No correction
was necessary for the x and y dimensions because shrink-
age in section surface area is minimal (Dorph-Petersen et
al., 2001).

For neuron density counts, an average of 102.4 + 22.5
(mean *= SD) sampling sites was placed in each layer/
individual/cortical area, with a total of 16,591 sampling
sites investigated and 40,201 neurons counted. The mean
coefficient of error related to sampling (CE; Schmitz and
Hof, 2000) was 0.06 with a standard deviation of 0.02.

Axon length density/neuron density ratio

The ratio of axon length density to neuron density (ALv/
Nv) was used for comparative analyses among species
rather than axon length to avoid several confounding fac-
tors. First, cell density per unit volume can vary with
changes in brain size (Haug, 1987; Sherwood et al., 2007).
Thus, the ratio of ALv/Nv allows for the evaluation of fiber
density in the context of species differences in neuron
density. As such, this ratio could be interpreted as inner-
vation per neuron. Next, postmortem interval, method of
fixation, and amount of time in fixative are factors that
contribute to preprocessing tissue shrinkage. Additional
tissue shrinkage may occur with histological and immu-
nohistochemical procedures. Thus, the ALv/Nv ratio acts
to standardize data for differential tissue shrinkage
among species as well as among individuals.

One of the defining features of layer I, the molecular
layer, is an absence of neurons, precluding the use of a
layer I ALv/Nv. To circumvent this problem so that
among-species comparisons could be made we used the
ratio of axon length density in layer I to the neuron den-
sity of layer II for each species and area.

Statistical analyses

Factorial analysis of variance (ANOVA) with repeated
measures design was used to examine differences among
macaques, chimpanzees, and humans. The variables were
ChAT-ir ALv/Nv for layers I, II, III, and V/VI. A4 X 3 X
3 mixed-model ANOVA was performed with cortical area
(9, 32, and 4) and layer (I, II, III, and V/VI) as within-
subjects measures and species as the between-subjects
measure. Tukey’s Honestly Significant Difference (HSD)
post-hoc tests were used to analyze significant results
indicated by the ANOVA analyses. Separate analyses
were conducted for ChAT-ir axon length density to exam-
ine innervation patterns independent of neuron densities
and species effects. For axon length density, a 3 X 4
(area X layer) repeated measures ANOVA was used to
analyze the pattern differences between areas and layers
within each species. Tukey’s HSD post-hoc tests were used
to evaluate significant results. To assess whether post-
mortem interval (PMI) affected the intensity of immuno-
histochemical staining, nonparametric Spearman’s corre-
lation coefficients were calculated for PMI and ChAT-ir
ALv/Nv in humans. Data on specific PMI were not avail-
able for the chimpanzee sample and PMI was not appli-
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cable for the macaques as they were perfused. Spearman’s
rank order correlation was also used to test the strength of
the relationship between age and ChAT-ir ALv/Nv within
each species. Our sample was restricted to nongeriatric
individuals in order to control for the potentially con-
founding factor of age-related declines in cortical ChAT-ir
axon density. An « level of 0.05 was set for all statistical
tests.

An additional methodological concern is the effect of
immersion (humans and chimpanzees) versus perfusion
(macaques) methods of fixation on the reliability of immu-
nohistochemistry. Perfusion is the most effective method
of preservation for immunohistochemical procedures
(Evers and Uylings, 1997; Evers et al., 1998; Shiurba et
al., 1998; Jiao et al., 1999). If this were a factor in this
study it would be expected that axons would be overrep-
resented in all layers and areas of the macaques. How-
ever, staining was robust in all species and such an over-
representation in macaques was not observed. This is
evident in the results, wherein macaques do not exhibit
uniformly greater densities than either humans or chim-
panzees. Rather, the amount of variation observed in ma-
caques relative to other species is layer- and area-specific
and not in one consistent direction.

RESULTS
Qualitative description

ChAT-ir axons were present in all layers of the cortical
areas examined in each of the species (Fig. 2). Figures 3, 4,
and 5 show ChAT-ir tracings in each area for each species.
These figures were produced by obtaining montage images
of the cortical areas at 20X (Zeiss Achroplan, N.A. 0.50)
and tracing individual axons using Adobe Photoshop soft-
ware. Although there was significant variation among in-
dividuals, this variation was not correlated with PMI
among humans (all P values > 0.05, two-tailed). Spear-
man’s rho correlation coefficients were calculated to test
the strength of the relationship between age and ChAT
ALv/Nv in each species. Of the 36 possible correlations (3
species X 3 areas X 4 layers), only 17% (6/36) were sig-
nificant, indicating that age did not consistently affect
ALv/Nv, especially considering that four of the six signif-
icant findings were positive, not negative, correlations.
Indeed, the eldest in each species possessed ChAT ALv/Nv
values that were comparable to values found for the
youngest individual within the same species, with no con-
sistent directional shift.

Previous reports have described ChAT-ir distributions
within the cerebral cortices of humans (Mesulam et al.,
1992; Mesulam, 1996, 2004), long-tailed macaques (Ma-
caca fascicularis) (Lehmann et al., 1984; Lewis, 1991), and
rhesus macaques (M. mulatta) (Mesulam et al., 1983,
1986). The qualitative findings of the present study are in
accordance with these earlier descriptions in humans and
macaques. This study represents the first analysis of
ChAT-ir axons within the chimpanzee cerebral cortex. For
the species analyzed here, we found the distribution of
ChAT-ir axons to be regionally heterogeneous with dis-
crete laminar patterns.

The majority of the cholinergic axons observed in all
species were thin with multiple closely spaced varicos-
ities (Fig. 6). Less common morphological axon types
were thicker and smooth or with irregularly spaced
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Fig. 2. Brightfield photomicrographs showing ChAT-ir fiber stain-
ing in layers I-III and layer III of area 32, respectively, in macaque
(A,B), chimpanzee (C,D), and human (E,F). Scale bars = 100 um.

oblong swellings (Fig. 7). This less common axon type
was more abundant in the infragranular layers. Layer I
axons tended to be oriented horizontal to the cortical
surface, while axons in layers II-VI were oriented in a
variety of directions and formed dense networks of var-
icose fibers.

Among the cortical areas examined, area 4 displayed
the densest complement of ChAT-ir fibers for each of the
species. Relative to area 4, areas 9 and 32 were less
densely innervated and no obvious qualitative differences
were apparent between these two areas within each spe-
cies (see Figs. 3-5). Distinct species-specific laminar pat-
terns of ChAT-ir axons were observed among cortical re-
gions. In all macaque cortical regions layers I and II were
densely innervated, while layers III and V/VI appeared to
have a less dense contingent of fibers. This pattern was
most pronounced in area 4 of macaques. In contrast to
macaques, the innervation in humans and chimpanzees
appeared more uniform in areas 9 and 32, with all layers
having more or less equally dense innervation. The pat-
tern for human and chimpanzee area 4 was similar to that
of macaques, with layers I and II appearing more densely
innervated than layers IIT and V/VI.

The presence of ‘clusters’ of ChAT-ir axons was noted in
all areas examined in humans and chimpanzees (Fig. 8), a
feature that was observed in humans by Mesulam et al.
(1992). Morphologically, clusters consisted of dense tan-
gles of varicose axons that were easily identifiable within
the cortical mantle. Comparable features were not ob-
served in macaques. However, all species demonstrated
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localized plexuses of ChAT-ir fibers that were denser than
the surrounding areas. Another remarkable feature was
the common occurrence of dense perisomatic staining
present in layers III through V of all cortical areas of the
macaques (Fig. 9). This distinctive perisomatic staining
surrounded oval or ovoid shaped cells in methyl green
counterstain, a morphology that is usually indicative of
inhibitory interneurons. None were pyramidal or triangu-
lar in shape. This attribute was occasionally observed in
chimpanzees, but absent in all human samples.

Within-species analyses

Table 2 lists the mean ChAT-ir axon length density for
each species/area/layer. The 4 X 3 repeated-measures
ANOVA used for the analysis of ChAT-ir axon length
density within macaques showed a significant interaction
between layer and area (Fg 5, = 4.68, P < 0.01: Fig. 10A),
and significant main effects of layer (F; ;5 = 78.93, P <
0.001) and area (Fy ;5 = 6.62, P < 0.02). The results of the
chimpanzee analysis yielded a significant interaction
(Fg 30 = 5.56, P < 0.01: Fig. 10B), and significant main
effects of layer (F; ;5 = 36.91, P < 0.001) and area (Fy ;, =
7.55, P < 0.02). In humans the interaction was not signif-
icant (Fg 30 = 0.54, P > 0.05: Fig. 10C). However, the main
effects were each significant: layer (F;,5 = 26.34, P <
0.001), and area (F, ;, = 6.08, P < 0.02). For humans, area
4 displayed the highest axon length density in all layers,
area 32 was intermediate, and area 9 had the lowest
innervation (see Table 2, Fig. 10C). Of the layers, layer II
had the highest density, followed by layers I, III, and V/VI.

Tukey HSD post-hoc tests were performed to analyze
the significant interactions found in the analyses of data
from macaques and chimpanzees. Comparisons were
made between layers within each cortical area (Table 3),
as well as the differences of layers between cortical
regions (Table 4). In all cortical areas of macaques,
layers I and II were more densely innervated than ei-
ther layer III or V/VI. Layer III was more densely in-
nervated than V/VI in area 9 (Table 3). In chimpanzees,
layers I and II had a significantly higher axon length
density than III or V/VI in area 4 only (Table 3). This
matched the patterns found in areas 4 and 32 of the
macaques. No laminar differences were detected in area
32 of chimpanzees, and only one difference was found in
area 9, with layer II having more axons than V/VI. In
the comparisons among macaque cortical areas (Table
4) there were no significant differences between areas 9
and 32. When comparing area 9 to area 4, only layer I
was different, being denser in area 4. Finally, in ma-
caques area 4 had a uniformly denser innervation over
area 32. The chimpanzee pattern was different from
that of the macaques in some of the comparisons (Table
4). Like macaques, chimpanzees displayed no differ-
ences between areas 9 and 32. Similar to macaques,
chimpanzee area 4 layers I, II, and III were more
densely innervated than those of than either area 9 or
area 32.

Among-species analyses

The mean ALv/Nv and standard deviation for each cor-
tical area and layer for macaques, chimpanzees, and hu-
mans are listed in Table 5 and graphically displayed in
Figure 11. In the 4 X 3 X 3 ANOVA with repeated-
measures design, the main effect of species was not sig-
nificant (F, ;5 = 0.96, P > 0.05), although the main effects
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Fig. 6. Examples of thin cholinergic axons with multiple, closely
spaced varicosities. Panels show axons in (A) macaque, (B) chimpan-
zee, and (C) human. Scale bars = 25 pm.

Fig. 7. Cholinergic axons that are thick and smooth or with irreg-
ularly spaced oblong swellings. The panels show examples of axons in
(A) macaque, (B) chimpanzee, and (C) human. Scale bars = 25 pm.

of layer and area were each significant (layer: Fs ,5 =
19.58, P < 0.001; area: F, 3, = 28.85, P < 0.001). The
three-way interaction among layer, area, and species was
not significant (Fy5 9, = 1.64, P > 0.05). Of the two-way
interactions, layer X species and layer X area were sig-
nificant (layer X species: Fg 45 = 9.30, P < 0.001; layer X
area: Fg oo = 11.25, P < 0.001), and area X species was not
(Fy30 = 1.34, P > 0.05). The layer X area interaction was
expected due to the regional and laminar heterogeneity of

Fig. 8. ChAT-ir axon ‘clusters’ in human (A) and chimpanzee (B).
Scale bar = 25 pm in A.

Fig. 9. ChAT-ir perisomatic staining in macaques. Scale bar = 25 pm.

TABLE 2. ChAT-ir Axon Length Densities (wm/pm?) for Each Species,
Area, and Layer

Species Layer Area 9 Area 32 Area 4 N
Macaca maura 1 0.159 + 0.06 0.130 + 0.04 0.230 + 0.04 6
I 0.173 = 0.06 0.138 = 0.03 0.207 = 0.04
juss 0.120 + 0.03 0.084 = 0.02 0.126 + 0.02
V/VI 0.082 + 0.03 0.067 = 0.01 0.113 + 0.02
Pan troglodytes 1 0.064 =+ 0.02 0.061 = 0.01 0.111 = 0.03 6
11 0.067 £ 0.01 0.063 = 0.01 0.101 £ 0.03
juss 0.051 = 0.01 0.050 = 0.01 0.070 = 0.02
V/VI 0.047 = 0.01 0.047 = 0.01 0.064 = 0.01
Homo sapiens I 0.067 = 0.01 0.084 = 0.01 0.101 + 0.03 6
I 0.086 + 0.02 0.111 + 0.04 0.113 + 0.04
il 0.056 =+ 0.02 0.074 = 0.02 0.084 + 0.03
V/VI 0.047 £ 0.01 0.066 + 0.01 0.070 = 0.02

Data are expressed as mean * standard deviation.

ACh innervation. Overall, the layers of area 4 were more
densely innervated than corresponding layers in either
area 9 or 32 (Table 5). Post-hoc Tukey HSD tests of the
species X layer interaction revealed no differences be-
tween layers within either macaques or chimpanzees (all
P’s > 0.05). However, in humans, layer I was significantly
different from layer III (P = 0.001) and V/VI (P = 0.007).
Additionally, the pattern of innervation for areas 9 and 32
was different for humans and chimpanzees, in contrast to
the macaque monkeys. For macaques, layer V/VI was less
densely innervated than the other layers in areas 9 and
32. In contrast, humans and chimpanzees each main-
tained a higher density of ChAT-ir innervation to these
lower layers. All three species had similar innervation
patterns for area 4.
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TABLE 3. Probabilities for Tukey HSD Post-hoc Tests of ChAT-ir Axon

TABLE 4. Probabilities for Tukey HSD Post-hoc Tests of ChAT-ir Axon

Length Density Length Density
Species Layers Area 9 Area 32 Area 4 Species Layer Area 9-Area 32 Area 9-Area 4 Area 32-Area 4
Macaca maura I-IT 0.98 1.00 0.57 Macaca maura 1 0.21 0.00% (4) 0.00% (4)
I-II1 0.03* (I) 0.01* (I) 0.00* (I) II 0.07 0.09 0.00* (4)
I-V/VI 0.00* (I) 0.00* (I) 0.00* (I) juss 0.05 1.00 0.02* (4)
II-111 0.00* (II) 0.00* (II) 0.00* (IT) V/VI 0.94 0.18 0.01* (4)
II-V/VI 0.00* (II) 0.00* (II) 0.00* (II) Pan troglodytes 1 1.00 0.00* (4) 0.00* (4)
III-V/VI 0.04* (IIT) 0.88 0.98 I 1.00 0.00* (4) 0.00% (4)
Pan troglodytes I-IT 1.00 1.00 0.73 IIT 1.00 0.04* (4) 0.03*% (4)
I-II1 0.48 0.70 0.00* (I) V/VI 1.00 0.09 0.07
I-V/VI 0.11 0.25 0.00* (I)
II-11T 0.15 0.41 0.00* (II) Differences of layers are reported between cortical regions for each species.
II-V/VI 0.02* (II) 0.10 0.00* (II) *Results statistically significant at the 0.05 level. The area with the higher axon length
III-V/VI 1.00 1.00 0.99 density is indicated in parentheses to the right of each significant result.

Comparisons between layers within each cortical area for macaques and chimpanzees.
*Results statistically significant at the 0.05 level. The layer with the higher axon length
density is indicated in parentheses to the right of each significant result.

DISCUSSION

The cholinergic innervation of the cerebral cortex is
ubiquitous but regionally heterogeneous. It has been pos-
ited to be the most substantial cortical regulatory path-
way in terms of its widespread innervation (Mesulam et
al., 1992). Due to the lack of regional uniformity of cortical
innervation and the distinct laminar patterning, it is be-
lieved that ACh is able to exert differential control over

local circuits rather than acting in a global manner across
the cortex (Lysakowski et al., 1986; Lewis, 1991; Mesulam
et al., 1992; Mechawar et al., 2000). Lesions or drugs that
deplete ACh cortical innervation in primates and rodents
impair learning and memory in the acquisition and per-
formance on discrimination tasks that challenge atten-
tional processes (Irle and Markowitsch, 1987; Fine et al.,
1997; Harder et al., 1998; Levin and Simon, 1998; Mc-
Gaughy et al., 2000; Tsukada et al., 2004; Sarter and
Parikh, 2005), and learning and memory deficits are ame-
liorated with ACh agonists (Levin and Simon, 1998; Wu et
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al., 2000). The effects of ACh are important for synaptic
modulation and its actions are cell- and receptor-type
specific, having both excitatory and inhibitory effects (see
Rasmusson, 2000, for a review). Finally, recent evidence
indicates an accelerated rate of protein evolution in pri-
mates relative to rodents for three separate cholinergic
receptor subtypes (Dorus et al., 2004). Collectively, the
evidence of regional heterogeneity, combined with studies
demonstrating the critical role that cortical ACh input
plays in cognition and its depletion in human neurodegen-

TABLE 5. Mean and Standard Deviation for ChAT ALv/Nv in Each Layer
and Cortical Area for Macaques, Chimpanzees, and Humans

Species Layer Area 9 Area 32 Area 4 N

Macaca I 1230.40 + 357.46 1185.63 = 352.97 1659.37 = 198.17 6
maura I 1328.90 = 407.69 1266.77 = 287.51 1502.62 * 215.76
111 1356.37 + 442.77 1091.29 = 229.11 1742.49 * 352.90
V/IVI 885.05 + 182.39  873.96 + 191.84 1962.76 * 323.37

Pan I 909.54 + 271.06  929.92 + 231.43 1542.29 * 23298 6

troglodytes I
11

964.30 + 161.38
1057.79 = 224.15

987.11 + 347.37
1210.12 = 386.37

395.92 * 250.91
1781.54 = 225.21

V/VI  1076.05 = 181.48 1127.47 = 404.58 1865.25 = 521.11

Homo I 36.71 = 160.75  829.06 = 88.61 940.72 = 308.72 6
sapiens II 961.17 + 375.04 1079.31 + 277.54 1080.08 + 407.63
III 1134.50 + 334.42 1357.06 + 436.03 1723.61 + 697.59
V/VI  1061.52 = 232.82 1217.47 = 281.19 1748.02 = 709.02

Data are expressed as a mean *+ standard deviation.

2500 - Area 9
A N Layer |
I Layer Il
3 Layer Il
2000 4 1 Layer VIVI
= 1500
=
e
<
=
=
o 1000
500
0 A
Macaca Pan Homo
3556 Area 4
2000 - I T
Z 1500 4
=
-
<
z
o 1000 4
500 -

Macaca Pan Homo

Fig. 11.

The Journal of Comparative Neurology. DOI 10.1002/cne
M.A. RAGHANTI ET AL.

erative and neuropsychiatric disorders, were the basis of
our hypothesis that the pattern of ACh cortical innerva-
tion may have undergone selective evolution within the
human lineage. Therefore, we performed a quantitative
comparative analysis of ChAT-ir fibers among human,
chimpanzee, and macaque brains. Because cortical cholin-
ergic systems influence higher cognitive functions, we ex-
pected humans to have significantly different innervation
density and laminar profiles relative to nonhuman pri-
mates. However, our results demonstrate that humans do
not have denser or more extensive cortical ACh input than
either chimpanzees or macaques.

The within-species analysis of axon length density dem-
onstrated variation in ChAT-ir axon innervation patterns
independent of neuron densities. This measure cannot be
used for among-species comparisons because it does not
account for differential tissue shrinkage. However, it does
allow for an analysis of variation among regions and lay-
ers within a species, and the results demonstrated differ-
ent patterns of cortical cholinergic innervation among the
three species examined here, independent of neuron den-
sities. These analyses revealed that area 4 was most
densely innervated for all species. For humans, area 32
was second to area 4 in axon length density. For ma-
caques, area 32 received the least cholinergic afferents of

P Area 32

2000 4

1500 -

ChAT ALv/Nv

1000

500 -

Homo

Macaca Pan

ChAT-ir ALv/Nv in each layer, area, and species.
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the three cortical areas and area 9 and 32 were compara-
bly innervated in chimpanzees.

Comparisons of ChAT ALv/Nv in each layer and area
revealed subtle differences among humans, chimpanzees,
and macaque monkeys. Post-hoc analyses of the species X
layer interaction indicated that humans had significantly
less cholinergic input to layer I when compared to either
layer III or layer V/VI. This same pattern was observed in
chimpanzees, although it did not reach statistical signifi-
cance. In contrast, the pattern in macaques for ChAT
ALv/Nv was such that the input to layers V/VI was lower
compared to layer I for areas 9 and 32, but not for area 4
(Table 4). The pattern of ChAT innervation in the primary
motor cortex was similar for all species (Fig. 11). The fact
that the innervation patterns differ between the ma-
caques and hominines (i.e., chimpanzees and humans) in
areas 9 and 32 is intriguing. This could reflect an alter-
ation in cortical circuitry, putting a stronger emphasis on
ACh input in layers III and V/VI of the cortical areas
involved in cognition in the evolution of the lineage that
includes humans and chimpanzees. Layer III is important
because of its putative role as the terminal input layer in
controlling corticocortical connections (Fuster, 1997), and
layers V and VI receive input from the supragranular
layers and mainly provide output to the brainstem, spinal
cord, and other subcortical areas. It is possible that these
variations may represent a subtle phyletic shift in cortical
cholinergic transmission.

Perisomatic staining of what appeared to be inhibitory
interneurons was commonly observed in layers III-V in all
areas of the macaque cortex. This feature was rarely noted
in chimpanzee motor cortex. Similar features were not
present in any of the human cortical areas. This distinc-
tive feature was not reported in previous literature in
humans or in long-tailed and rhesus macaques (Lehmann
et al., 1984; Mesulam et al., 1986, 1992; Lewis, 1991;
Mesulam, 2004). It is possible that this feature is unique
to Moor macaques. Van der Gucht et al. (2006) recently
demonstrated significant variation in the structure of the
prelunate gyrus among different macaque species, includ-
ing the Moor macaque, illustrating that substantial neu-
roanatomical variation is possible among closely related
congeners. Further studies will be necessary to determine
if it is found in other species and what the functional
implications of this perisomatic staining may be.

The presence of ‘clusters’ of ChAT-ir fibers was observed
in humans and chimpanzees, but not in macaques. Clus-
ters were described in human cortex by Mesulam (1992) as
being complex glomerular dense clusters of varicose ax-
ons. We observed these clusters sporadically distributed
throughout the cortical mantle in both humans and chim-
panzees. What this axon morphology represents is un-
known, although it was suggested that their occurrence
represents local events of plasticity or circuitry rearrange-
ment (Mesulam et al., 1992). If clusters are representative
of cortical plasticity events, their presence in human and
chimpanzee, but not macaque, cortices is intriguing. This
possibility is made more interesting by the recent discov-
ery of serotonergic and dopaminergic clusters of axons in
both human and chimpanzee neocortex and their absence
in macaque monkeys (Raghanti et al., 2007, and submit-
ted). This may indicate that human and chimpanzee
brains are characterized by a greater capacity for plastic-
ity mediated by neuromodulators possibly contributing to
cognitive and behavioral flexibility. In addition, a signifi-
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cant amount of individual variation in ChAT-ir fibers was
present within our sample. Interindividual variation in
cortical cholinergic innervation in the hippocampus, cau-
date nucleus, and frontoparietal cortex was positively cor-
related with performance on learning tasks in mice (Dur-
kin et al., 1975), and it has been suggested that variations
in cholinergic innervation in human and nonhuman pri-
mates would reflect individual differences in learning abil-
ities (Mesulam et al., 1986).

To date, the only comparative study involving cortical
ACh input involved measuring the amount of potassium-
induced ChAT activity in mouse versus human neocortical
slices (Sigle et al., 2003). Relative to mice, only a very low
concentration of potassium was required to induce ChAT
activity in humans (Sigle et al., 2003). Direct comparisons
of ACh cortical input between different species have not
been reported. However, some comparisons can be made
from the existing literature. Studies of the distribution of
ChAT-ir axons in the rat neocortex reported their pres-
ence in all cortical areas and layers (Ichikawa and Hirata,
1986; Lysakowski et al., 1986; Mechawar et al., 2000),
with the frontal cortex receiving the densest complement
of fibers and layer I having the highest laminar density
(Mechawar et al., 2000). In contrast, Old World primates
exhibit a rostral-caudal gradient of innervation, with in-
nervation in rostral areas of the frontal cortex being less
dense than the caudal premotor and motor areas (Mesu-
lam et al., 1986, 1992; Lewis, 1991). A study of ChAT-ir
axons in cat sensory and motor cortices demonstrated
regional and laminar differences in innervation patterns,
with primary visual cortex being less densely innervated
than other sensory cortical areas (Avendario et al., 1996).
Another notable difference between primates and other
mammals is the occurrence of ChAT-positive neurons in
both cat and rat neocortex, albeit with species-specific
densities and distributions (Ichikawa and Hirata, 1986;
Avendafio et al., 1996; Mechawar et al., 2000; Bhag-
wandin et al., 2006). ChAT-ir cells have been detected in
primate cerebral cortex only during fetal development
(Hendry et al., 1987).

Differences among primates have been reported for the
localization of galanin relative to cholinergic neurons in
the basal forebrain (Kordower and Mufson, 1990; Benzing
et al., 1993). Galanin is an inhibitory modulator of acetyl-
choline in rats (Laplante et al., 2004; Elvander and Ogren,
2005) and galanin-ir fibers are hypertrophied in Alzhei-
mer’s disease, with increased expression of galanin recep-
tors within the nucleus basalis corresponding to late-stage
Alzheimer’s disease (Mufson et al., 2000). Galanin hyper-
function is associated with the cholinergic hypofunction
and likely contributes to the associated learning and
memory deficits characteristic of Alzheimer’s patients
(Chan-Palay, 1988). Among primates, humans and apes
(gibbons, chimpanzees, and gorillas) displayed a distinc-
tively different localization of galanin-ir relative to mon-
keys (brown capuchins, rhesus macaques, and baboons)
(Benzing et al., 1993). Taken together with the findings
reported here, it appears that both cholinergic innervation
and modulation were altered in the evolution of apes and
humans.

The present research represents the first comparative
study of cholinergic innervation of the cerebral cortex
between humans and nonhuman primates. Data demon-
strating the differences (or similarities) between humans
and other species, particularly other primate species, are
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critical to our understanding of the evolution of the human
brain and its unique cognitive abilities. Our quantitative
analyses of ChAT-ir axons revealed no species differences
in either primary motor cortex or in prefrontal cortical
areas implicated in cognitive functions, indicating that
human cognitive specializations are not related to a quan-
titative increase in cortical ACh input. However, species-
specific variation in the morphology of axons was ob-
served. Clusters of ChAT-ir fibers were present in
chimpanzees and humans, but not in macaques. It has
been suggested that such clusters may represent local
areas that have been preferentially involved in cortical
plasticity (Mesulam et al., 1992), but their true physiolog-
ical function is not yet known. Further studies are neces-
sary to determine the importance of this feature and
whether it represents a significant specialization of pro-
cessing capabilities in the cerebral cortex of great apes
and humans. The other significant morphology noted was
the common and distinctive ovoid perisomatic staining in
macaque cortices. This feature was sporadically observed
in chimpanzee cortex and never in humans. Earlier stud-
ies of long-tailed and rhesus macaques did not mention
this morphology (Mesulam et al., 1986; Lewis, 1991). This
may represent a unique specialization in Moor macaques,
the species used in the present study. Together, the alter-
ations in cortical innervation and morphology shared by
humans and chimpanzees may contribute to an increase
in cognitive and behavioral flexibility and an increased
capacity for learning and memory.

Finally, it should be noted that the inclusion of chim-
panzees in this study, a species rarely studied, allowed for
additional insight into human-specific specializations that
would otherwise not have been possible. We currently
have very little knowledge regarding the neural underpin-
nings of uniquely human cognitive abilities. To gain an
understanding of human evolution we must use compar-
ative data from a diverse range of species (Preuss, 2006).
Comparisons that include chimpanzees are especially rel-
evant in determining neuroanatomical features that sup-
ported human brain evolution due to their close phyloge-
netic relationship with humans.
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