Xanthogranuloma of the Choroid Plexus in the Fat-Tailed Dwarf Lemur (Cheirogaleus medius)

JASON T. LEE1, CAROL A. MILLER1,2, COLIN T. MCDONALD2, AND JOHN M. ALLMAN3

1Division of Biology, California Institute of Technology, Pasadena, California; 2Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; and 3Department of Pathology, University of Southern California, School of Medicine, Los Angeles, California

This report documents the death of two fat-tailed dwarf lemurs (Cheirogaleus medius) maintained over 6 years each in our laboratory. Postmortem studies revealed xanthogranuloma of the choroid plexus, a mass replete with stored lipids, including cholesterol crystals. Six months prior to their deaths, both animals developed a peculiar head tilt and signs suggestive of neurological dysfunction. At autopsy, each had masses projecting into the lateral and IVth ventricles and an associated obstructive hydrocephalus. Cryostat sections of the brains of both lemurs showed histological features consistent with xanthogranuloma of the choroid plexus, a histologically benign and usually asymptomatic lesion found in up to 7% of human autopsies. This case is of special interest because of the unique feeding strategies in the fat-tailed dwarf lemur. Since C. medius remains in torpor for 6 months out of the year during the time of food scarcity in the forests of Madagascar, the animal must accumulate large reserves of fat during its active period. In the laboratory, however, dwarf lemurs do not normally go into torpor, and the accumulated fat is not used. The finding of this tumor, therefore, suggests that the combination of a captive high-fat diet and the unusual fat-storage mechanisms utilized by C. medius contributed to the buildup of lipids and might be etiologically related to the development of these lesions. © 1996 Wiley-Liss, Inc.

Key words: brain tumor, lipids, diet, captivity

INTRODUCTION

The nocturnal dwarf lemurs, Cheirogaleus, are interesting in their unique lipid metabolism and related feeding strategies. The most characteristic feature of the fat-tailed dwarf lemur, Cheirogaleus medius, is that it goes into torpor during the dry season, remaining inactive for at least 6 months [Petter, 1978]. Torpor, though functionally similar to hibernation, does not require the inactivity to take place in the winter months as seen in northern mammals. During the dormant period of C. medius, which usually occurs from May to November, the lemurs retire to deep holes within tree trunks, forming groups of 3–5. They do not emerge from...
this state until the beginning of the rainy season, when there is maximal food
availability in the forests of Madagascar [Hladik, 1980].

During this transient period of surplus food, the animals will provide for their
annual nutritional requirements. *C. medius* prepares for the next dormancy by
storing large fat reserves under the skin and inside the tail. The accumulation of
lipids in their body is crucial to the overall feeding strategy, allowing them to
survive during the following 6 months when food is scarce. This period of torpor in
the dry season is therefore thought to be an adaptive measure for survival [Wright,
1994]. Field studies reveal that the mean body weight of *C. medius* increases from
145 g to 220 g from November to March, and mean volume of the tail triples,
increasing from 15 cc to 42 cc in the same time frame [Harcourt, 1990]. In nature
C. medius eats mainly fruit supplemented by nectar and insects when available;
undigested invertebrate parts have been found in 50% of fecal samples but never
constituting more than 10% of the sample [Hladik et al., 1980].

Similar body weight fluctuations in *C. medius* have been recorded in labora­tory environments [Russell, 1975]. But in these captive animals, the period of
torpor was not clearly defined, and there was never a period of genuine inactivity.
In a separate study [Petter-Rousseaux, 1980], definitive torpor in the lab was not
observed until the animals were subjected to winter temperatures as low as 12°C.
Only under those experimental conditions did the animals become inactive for 6
months of the year. In our laboratory, we never observed a period of torpor or
significant body weight fluctuations during the 6 years we housed the two lemurs.

MATERIALS AND METHODS

Case History

Housing conditions. Both dwarf lemurs were housed inside 0.8 m × 0.8 m ×
0.8 m stainless steel cages with climbing perches and nest boxes. Each dwarf lemur
had a mate. Their mates did not develop this condition. The temperature was
maintained year round between 26 and 28°C. Between 8 AM and 12 PM
every morning, each pair of lemurs was fed approximately 100 g each of Iams
brand dry cat chow #7250 (two small handfuls) and 40 g fruit supplement (two
pieces of bananas, apples, pears, peaches, or nectarines). The composition of the
chow was as follows: 32% protein, 21% fat, and 3% fiber per daily serving. Water
was available at all times.

Lemur #1. A male fat-tailed dwarf lemur was one of seven obtained from
DUPC, lemur #1 displayed no remarkable behavior or neurological signs in the
first 6 years of his life indicative of brain dysfunction. The light cycle for lemur #1
was 12/12 hr (day/night) without any seasonal variations. His feeding habits re­
mained constant throughout most of his lifetime, slowly gaining weight as the
years progressed. Six months prior to death, lemur #1 developed an occasional,
peculiar, sustained head tilt to one side for periods of up to a day. The animal's
decline was also marked by lethargic behavior and a reduction in appetite. The
lemur then expired. At the time of autopsy, lemur #1 weighed 283 g.

Lemur #2. A second male fat-tailed dwarf lemur, obtained at the same time
as lemur #1, was born at DUPC in September, 1987, and he too displayed no
abnormal behavior or neurological changes during his lifetime. The light cycle for
Lemur #2 was varied on an annual cycle between 10 and 14 hr day and the balance
night. Two months after lemur #1 died, lemur #2 began to develop and exhibit the
same intermittent head tilt and sluggish behavior for 3 months until he also
expired. At the time of autopsy, lemur #2 weighed 265 g.
Preparation of Brain Tissue

Both brains were removed and immersed overnight in standard 0.1 M sodium phosphate buffer containing 3% gluteraldehyde and 10% sucrose at 4°C. The sucrose concentration was then increased to 30% for cryoprotection for approximately 6 hr, until the brain was saturated and sunk to the bottom of the flask. Cryostat sections (40 μ) were cut and stained with hematoxylin and eosin.

RESULTS

The brain from lemur #1 was markedly asymmetric with enlargement of the left hemisphere (Fig. 1a). The cerebellar hemispheres were also enlarged. The brain was bisected in the parasagittal plane through the corpus callosum, revealing a large, yellow-orange, mottled mass (Fig. 1b) extending into and distending the left lateral ventricle and a second mass effacing the IVth ventricle. Cryostat sections (40 μ) were then cut sagittally from the left half, and coronal sections from the right half.

Upon gross inspection of the brain from lemur #2, the right cerebral hemisphere was markedly dilated. Coronal sections revealed hydrocephalus with diffuse bilateral thinning of the cortices, the right greater than the left. A 4 x 4 mm mass extended from the thalamic region into the ventricle and obstructed the foramen of Monroe (Fig. 1c). The cut surface of this mass showed a yellow-tan, variegated coloration. In the cerebellum, a small 3 x 3 mm mass extended from the roof of the IVth ventricle, but did not occlude the ventricle.

Microscopically, the lesions from both lemurs showed a cellular pattern con-
consistent with xanthogranuloma of the choroid plexus. Each lesion projected as a mass, partially effacing the ventricular cavity and in continuity with the brain parenchyma (Fig. 2a). Viewed in an EDGE high-definition microscope, the mass contained numerous, crescent-shaped clear spaces, or “cholesterol clefts,” lined by flattened, foreign body giant cells and macrophages (Fig. 2b,c). Some of these structures were rimmed by a focal, calcified capsule-like structure. Within some spaces, there was amorphous, acellular, granular debris. The intervening neuropil and the base of each mass contained areas of dense gliosis with bands of collagen, scattered astrocytes, and mineralized deposits. Entrapped choroid plexus epithelium was not present. No mitotic figures were seen. There was no nuclear atypia indicative of malignancy. The adjacent cerebral cortex and cerebellum showed normal neuronal layering and organization. The underlying white matter was thinned and there was loss of the ependymal lining of the ventricles.

DISCUSSION
Xanthogranulomas of the choroid plexus of the human CNS occur asymptotically in 1.2–7% of autopsies [Ayres & Haymaker, 1960]. Lesions producing neurological symptoms are, however, rare and can occur throughout life. Characteristically, these histologically benign lesions arise within the glomus of the trigone of the lateral ventricle [Brück et al., 1991]. Although infrequent in humans, they commonly occur in aged horses [Innes and Saunders, 1962], leading to a condition called “Dummkoller” (literally “dumb staggers”). No documentation of these particular brain lesions in lemurs has been found in the previous literature [Benirschke et al., 1985], although lipid-related tumors have been found in other nonhuman primates.

A lipoma was incidentally found in the choroid plexus of the lateral ventricle of an intrathalamically inoculated rhesus monkey [Weston, 1965]. A lipoma occurring in the abdominal cavity led to the death of a previously pregnant Cerco­pithecus diana that had been in captivity for 15 months [Ratcliffe, 1942]. The tumor proved to be continuous with the adjacent subcutaneous fat, and the liver and kidneys of the monkey also contained unusually large quantities of fat within the cytoplasm of epithelial cells. Another lipoma was reported in the omentum of an 8-year-old Macaca silenus [Kronberger & Rittenbach, 1968] that subsequently led to the animal’s death. The unique occurrence of this particular CNS lesion causing death in our lemurs therefore leads to speculation concerning the impact that captivity and diet have on the health of these animals.

When symptomatic, these lesions produce obstructive hydrocephalus by mass effect, resulting in headache, visual disturbances, and papilledema. Brainstem dysfunction, produced by the increased intracranial pressure, was observed in both lemurs prior to death, as evidenced by the peculiar head tilt. The hydrocephalus and resultant brainstem compression are the likely cause of death in both lemurs. Because xanthogranulomas do not arise in the IVth ventricle, the occurrence at that site in these dwarf lemurs is therefore unusual and distinct from that in the human CNS [Hicks et al., 1993].

The etiology of xanthogranulomas is unclear. Possibilities include processing of erythrocyte membranes to cholesterol after small, intra-choroidal hemorrhages, or deposition of plasma lipids in the choroid plexus matrix, a site lacking a blood–brain barrier. Positive correlation between serum hyperlipidemia or elevated cholesterol and the occurrence of these lesions has not been observed. However, xanthomatous disease of a genetic basis can involve the brain [Flach & Weinkelmann, 1986; Giller et al., 1988]. Considering the fat reserves built up during the feeding period in a normal fat-tailed dwarf lemur, we believe the lack of torpor in captive
Fig. 2. a: Parasagittal cryostat section of the brain of lemur #1 shows two tumors (arrows): one projects into the lateral ventricle (LV) and a second into the IVth ventricle (IV) (5 x). b: At low magnification, nests of cholesterol clefts (clear areas) are surrounded by glial stroma. Each cleft is enveloped in a cellular syncytium (arrows). The cleft is devoid of stainable material as cholesterol is removed by lipid solvents during histologic processing. A dense, calcific deposit lies in the adjacent stroma (arrowheads) (300 x). Bar measures 5 μM. c: At higher magnification, the syncytium (arrows) is multinucleated and lines the cleft (750 x). Bar measures 1 μM (hematoxylin and eosin).
animals is a strongly contributing factor to accumulation of lipids and subsequent development of these lesions. Both animals had remained active and alert throughout the years, without any significant fluctuations in activity level or appetite until the gradual decline in health approximately 6 months before death. The weight of both lemurs at the time of death was above the average maximum at the end of the feeding season for sample dwarf lemurs living in Madagascar (283 and 265 vs. 220 g), showing that our lemurs were overweight.

A previous study [Birt et al., 1992] has shown that dietary calorie restriction of carbohydrates and fats inhibits the development of papillomas and carcinomas in the skin of rats. The direct relationship between high dietary fats and tumor formation indicates that unmonitored or nonutilized high-fat diets (like those in our lemurs) can have direct consequences related to neoplasia. Because of the fat storage adaptation of this species, these lemurs may be at a higher risk for fatty tumor production. Other studies have documented high-fat diets enhancing carcinogenesis in a number of tumor types, including breast [Welsch, 1987], colon [Newberne et al., 1986], and pancreas [Roebuck et al., 1989].

A future dietary study in this type of lemur could elucidate the role of high-fat diets in the development of these lesions. Because of the lipid nature of the tumor, we believe that the rich captive diet was a contributing factor, and when considered with the lack of torpor in laboratory lemurs may have fostered the formation of the tumor and subsequent death. The Iams brand cat chow that comprised the lemurs' diets for 6 years obviously had more protein and fat than the lemurs in captivity required, as evidenced by the constant weight gain throughout the years. We have since switched, as a precautionary measure, to the Purina brand New World Primate Chow (#5040) that contains 20% protein, 9% fat, and 5% fiber per daily serving. This regimen essentially halves the amount of calories from fat contributed by chow in the diet. We have also increased fruit availability, now serving about 75 g of chow (one large handful) with about 75 g of fruit (4–5 pieces) to each pair, because fat calories from a predominantly carbohydrate (fruit and nectars) food source have been shown to not be as tumor inducing as fat calories associated with a protein source [Tannenbaum, 1942]. We hope that such changes in diet will prevent xanthogranuloma formation in future lab animals.

These tumors might therefore provide a model system for the development of lipid-related brain tumors. Further studies of the unusual fat metabolism and storage in the fat-tailed dwarf lemur might lead to the elucidation of lipid mobilization pathways in the brain. Such mechanisms would be especially important in the relation between the effects of hypercholesterolemia or hyperlipidemia and the formation of xanthogranulomas.

CONCLUSIONS

1. Multiple xanthogranulomas of the choroid plexus, a lipid-related, benign lesion that is usually asymptomatic in the human CNS, produced obstructive hydrocephalus and ultimately death in two fat-tailed dwarf lemurs.

2. The high-fat captive diet of the lemurs may have contributed to the development of the tumors.

3. Coupled with the lack of definitive torpor, the unusual fat-storage mechanisms of this species of lemur may also be etiologically related to the accumulation of lipids and subsequent lesion formation.

ACKNOWLEDGMENTS

We thank Dr. Janet Baer for providing veterinary support and Ms. Mimi Sengupta for research assistance. Funding was provided by the Human Brain
Brain Tumor in Fat-Tailed Dwarf Lemur

Program (DA/MH 08944), the Shannon Award (NIA IR55-AG10283-01A1 and NIMH 5-R37-MH39145) to C.A.M., and the Caltech Summer Undergraduate Research Fellowship (SURF 1993) to J.T.L.

REFERENCES

Birt, D.F.; Kris, E.S.; Choe, M.; Pelling, J.C. Dietary energy and fat effects on tumor promotion. CANCER RESEARCH 52:2035s–2039s, 1992.

Tannenbaum, A. The genesis and growth of tumors. Effects of caloric restriction per se. CANCER RESEARCH 2:460–467, 1942.

